Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CHAPTER: Exploiting Convolutional Neural Network Adapters for Self-supervised Speech Models (2212.01282v2)

Published 1 Dec 2022 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: Self-supervised learning (SSL) is a powerful technique for learning representations from unlabeled data. Transformer based models such as HuBERT, which consist a feature extractor and transformer layers, are leading the field in the speech domain. SSL models are fine-tuned on a wide range of downstream tasks, which involves re-training the majority of the model for each task. Previous studies have introduced applying adapters, which are small lightweight modules commonly used in NLP to adapt pre-trained models to new tasks. However, such efficient tuning techniques only provide adaptation at the transformer layer, but failed to perform adaptation at the feature extractor. In this paper, we propose CHAPTER, an efficient tuning method specifically designed for SSL speech model, by applying CNN adapters at the feature extractor. Using this method, we can only fine-tune fewer than 5% of parameters per task compared to fully fine-tuning and achieve better and more stable performance. We empirically found that adding CNN adapters to the feature extractor can help the adaptation on emotion and speaker tasks. For instance, the accuracy of SID is improved from 87.71 to 91.56, and the accuracy of ER is improved by 5%.

Citations (15)

Summary

We haven't generated a summary for this paper yet.