Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermal first-order phase transitions, Ising critical points, and reentrance in the Ising-Heisenberg model on the diamond-decorated square lattice in a magnetic field (2212.01278v3)

Published 2 Dec 2022 in cond-mat.stat-mech and cond-mat.str-el

Abstract: The thermal phase transitions of a spin-1/2 Ising-Heisenberg model on the diamond-decorated square lattice in a magnetic field are investigated using a decoration-iteration transformation and classical Monte Carlo simulations. A generalized decoration-iteration transformation maps this model exactly onto an effective classical Ising model on the square lattice with temperature-dependent effective nearest-neighbor interactions and magnetic field strength. The effective field vanishes along a ground-state phase boundary of the original model, separating a ferrimagnetic and a quantum monomer-dimer phase. At finite temperatures this phase boundary gives rise to an exactly solvable surface of discontinuous (first-order) phase transitions, which terminates in a line of Ising critical points. The existence of discontinuous reentrant phase transitions within a narrow parameter regime is reported and explained in terms of the low-energy excitations from both phases. These exact results, obtained from the mapping to the zero-field effective Ising model are corroborated by classical Monte Carlo simulations of the effective model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.