Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MMBench: Benchmarking End-to-End Multi-modal DNNs and Understanding Their Hardware-Software Implications (2212.01241v4)

Published 2 Dec 2022 in cs.PF

Abstract: The explosive growth of various types of big data and advances in AI technologies have catalyzed a new type of workloads called multi-modal DNNs. Multi-modal DNNs are capable of interpreting and reasoning about information from multiple modalities, making them more applicable to real-world AI scenarios. In recent research, multi-modal DNNs have outperformed the best uni-modal DNN in a wide range of distributed computing applications from traditional multimedia systems to emerging autonomous edge systems. However, despite their importance and superiority, very limited research attention has been devoted to understand the characteristics of multi-modal DNNs and their implications on current computing software/hardware platforms. Existing benchmarks either target uni-modal DNNs or only focus on the algorithm characteristics of multi-modal DNNs. There lacks representative benchmark suites that provide comprehensive system and architecture level analysis of multi-modal networks. To advance the understanding of these multi-modal DNN workloads and facilitate related research, we present MMBench, an open-source, end-to-end benchmark suite consisting of a set of real-world multi-modal DNN workloads with relevant performance metrics for evaluation. We then use MMBench to conduct an in-depth analysis on the characteristics of multi-modal DNNs. We demonstrate their unique characteristics of clear multi-stage execution, frequent synchronization and high heterogeneity, which distinguish them from conventional uni-modal DNNs. Finally, we conduct a case study and extend our benchmark to edge devices. We hope that our work can provide insights for future software/hardware design and optimization to underpin multi-modal DNNs on both cloud and edge computing platforms.

Citations (7)

Summary

We haven't generated a summary for this paper yet.