Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAN-MC: a Variance Reduction Tool for Derivatives Pricing (2212.00197v1)

Published 1 Dec 2022 in stat.AP and stat.ME

Abstract: We propose a parameter-free model for estimating the price or valuation of financial derivatives like options, forwards and futures using non-supervised learning networks and Monte Carlo. Although some arbitrage-based pricing formula performs greatly on derivatives pricing like Black-Scholes on option pricing, generative model-based Monte Carlo estimation(GAN-MC) will be more accurate and holds more generalizability when lack of training samples on derivatives, underlying asset's price dynamics are unknown or the no-arbitrage conditions can not be solved analytically. We analyze the variance reduction feature of our model and to validate the potential value of the pricing model, we collect real world market derivatives data and show that our model outperforms other arbitrage-based pricing models and non-parametric machine learning models. For comparison, we estimate the price of derivatives using Black-Scholes model, ordinary least squares, radial basis function networks, multilayer perception regression, projection pursuit regression and Monte Carlo only models.

Summary

We haven't generated a summary for this paper yet.