Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Science and Machine Learning Methods in Laser-Plasma Physics (2212.00026v2)

Published 30 Nov 2022 in cs.LG, physics.acc-ph, physics.optics, and physics.plasm-ph

Abstract: Laser-plasma physics has developed rapidly over the past few decades as high-power lasers have become both increasingly powerful and more widely available. Early experimental and numerical research in this field was restricted to single-shot experiments with limited parameter exploration. However, recent technological improvements make it possible to gather an increasing amount of data, both in experiments and simulations. This has sparked interest in using advanced techniques from mathematics, statistics and computer science to deal with, and benefit from, big data. At the same time, sophisticated modeling techniques also provide new ways for researchers to effectively deal with situations in which still only sparse amounts of data are available. This paper aims to present an overview of relevant machine learning methods with focus on applicability to laser-plasma physics, including its important sub-fields of laser-plasma acceleration and inertial confinement fusion.

Citations (50)

Summary

We haven't generated a summary for this paper yet.