Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Play-Testing Through RL Based Human-Like Play-Styles Generation (2211.17188v1)

Published 29 Nov 2022 in cs.LG and cs.AI

Abstract: The increasing complexity of gameplay mechanisms in modern video games is leading to the emergence of a wider range of ways to play games. The variety of possible play-styles needs to be anticipated by designers, through automated tests. Reinforcement Learning is a promising answer to the need of automating video game testing. To that effect one needs to train an agent to play the game, while ensuring this agent will generate the same play-styles as the players in order to give meaningful feedback to the designers. We present CARMI: a Configurable Agent with Relative Metrics as Input. An agent able to emulate the players play-styles, even on previously unseen levels. Unlike current methods it does not rely on having full trajectories, but only summary data. Moreover it only requires little human data, thus compatible with the constraints of modern video game production. This novel agent could be used to investigate behaviors and balancing during the production of a video game with a realistic amount of training time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.