Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Swarm-Based Gradient Descent Method for Non-Convex Optimization (2211.17157v2)

Published 30 Nov 2022 in math.NA, cs.NA, and math.OC

Abstract: We introduce a new Swarm-Based Gradient Descent (SBGD) method for non-convex optimization. The swarm consists of agents, each is identified with a position, ${\mathbf x}$, and mass, $m$. The key to their dynamics is communication: masses are being transferred from agents at high ground to low(-est) ground. At the same time, agents change positions with step size, $h=h({\mathbf x},m)$, adjusted to their relative mass: heavier agents proceed with small time-steps in the direction of local gradient, while lighter agents take larger time-steps based on a backtracking protocol. Accordingly, the crowd of agents is dynamically divided between heavier' leaders, expected to approach local minima, andlighter' explorers. With their large-step protocol, explorers are expected to encounter improved position for the swarm; if they do, then they assume the role of `heavy' swarm leaders and so on. Convergence analysis and numerical simulations in one-, two-, and 20-dimensional benchmarks demonstrate the effectiveness of SBGD as a global optimizer.

Citations (7)

Summary

We haven't generated a summary for this paper yet.