Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Federated Deep Clustering based on GAN (2211.16965v2)

Published 30 Nov 2022 in cs.LG

Abstract: Federated clustering (FC) is an essential extension of centralized clustering designed for the federated setting, wherein the challenge lies in constructing a global similarity measure without the need to share private data. Conventional approaches to FC typically adopt extensions of centralized methods, like K-means and fuzzy c-means. However, these methods are susceptible to non-independent-and-identically-distributed (non-IID) data among clients, leading to suboptimal performance, particularly with high-dimensional data. In this paper, we present a novel approach to address these limitations by proposing a Privacy-Preserving Federated Deep Clustering based on Generative Adversarial Networks (GANs). Each client trains a local generative adversarial network (GAN) locally and uploads the synthetic data to the server. The server applies a deep clustering network on the synthetic data to establish $k$ cluster centroids, which are then downloaded to the clients for cluster assignment. Theoretical analysis demonstrates that the GAN-generated samples, shared among clients, inherently uphold certain privacy guarantees, safeguarding the confidentiality of individual data. Furthermore, extensive experimental evaluations showcase the effectiveness and utility of our proposed method in achieving accurate and privacy-preserving federated clustering.

Citations (4)

Summary

We haven't generated a summary for this paper yet.