Generalized Deep Learning-based Proximal Gradient Descent for MR Reconstruction (2211.16881v2)
Abstract: The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The deep learning-based proximal gradient descent was proposed and use a network as regularization term that is independent of the forward model, which makes it more generalizable for different MR acquisition settings. This one-time pre-trained regularization is applied to different MR acquisition settings and was compared to conventional L1 regularization showing ~3 dB improvement in the peak signal-to-noise ratio. We also demonstrated the flexibility of the proposed method in choosing different undersampling patterns.