Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SafeSpace MFNet: Precise and Efficient MultiFeature Drone Detection Network (2211.16785v2)

Published 30 Nov 2022 in cs.CV

Abstract: The increasing prevalence of unmanned aerial vehicles (UAVs), commonly known as drones, has generated a demand for reliable detection systems. The inappropriate use of drones presents potential security and privacy hazards, particularly concerning sensitive facilities. To overcome those obstacles, we proposed the concept of MultiFeatureNet (MFNet), a solution that enhances feature representation by capturing the most concentrated feature maps. Additionally, we present MultiFeatureNet-Feature Attention (MFNet-FA), a technique that adaptively weights different channels of the input feature maps. To meet the requirements of multi-scale detection, we presented the versions of MFNet and MFNet-FA, namely the small (S), medium (M), and large (L). The outcomes reveal notable performance enhancements. For optimal bird detection, MFNet-M (Ablation study 2) achieves an impressive precision of 99.8\%, while for UAV detection, MFNet-L (Ablation study 2) achieves a precision score of 97.2\%. Among the options, MFNet-FA-S (Ablation study 3) emerges as the most resource-efficient alternative, considering its small feature map size, computational demands (GFLOPs), and operational efficiency (in frame per second). This makes it particularly suitable for deployment on hardware with limited capabilities. Additionally, MFNet-FA-S (Ablation study 3) stands out for its swift real-time inference and multiple-object detection due to the incorporation of the FA module. The proposed MFNet-L with the focus module (Ablation study 2) demonstrates the most remarkable classification outcomes, boasting an average precision of 98.4\%, average recall of 96.6\%, average mean average precision (mAP) of 98.3\%, and average intersection over union (IoU) of 72.8\%. To encourage reproducible research, the dataset, and code for MFNet are freely available as an open-source project: github.com/ZeeshanKaleem/MultiFeatureNet.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Misha Urooj Khan (4 papers)
  2. Mahnoor Dil (1 paper)
  3. Muhammad Zeshan Alam (4 papers)
  4. Farooq Alam Orakazi (1 paper)
  5. Abdullah M. Almasoud (1 paper)
  6. Zeeshan Kaleem (13 papers)
  7. Chau Yuen (483 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com