Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Upper Bounds for All and Max-gain Policy Iteration Algorithms on Deterministic MDPs (2211.15602v2)

Published 28 Nov 2022 in cs.DM, cs.CC, and math.CO

Abstract: Policy Iteration (PI) is a widely used family of algorithms to compute optimal policies for Markov Decision Problems (MDPs). We derive upper bounds on the running time of PI on Deterministic MDPs (DMDPs): the class of MDPs in which every state-action pair has a unique next state. Our results include a non-trivial upper bound that applies to the entire family of PI algorithms; another to all "max-gain" switching variants; and affirmation that a conjecture regarding Howard's PI on MDPs is true for DMDPs. Our analysis is based on certain graph-theoretic results, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.