Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exoplanet Detection by Machine Learning with Data Augmentation (2211.15577v1)

Published 28 Nov 2022 in astro-ph.EP, astro-ph.IM, and cs.LG

Abstract: It has recently been demonstrated that deep learning has significant potential to automate parts of the exoplanet detection pipeline using light curve data from satellites such as Kepler \cite{borucki2010kepler} \cite{koch2010kepler} and NASA's Transiting Exoplanet Survey Satellite (TESS) \cite{ricker2010transiting}. Unfortunately, the smallness of the available datasets makes it difficult to realize the level of performance one expects from powerful network architectures. In this paper, we investigate the use of data augmentation techniques on light curve data from to train neural networks to identify exoplanets. The augmentation techniques used are of two classes: Simple (e.g. additive noise augmentation) and learning-based (e.g. first training a GAN \cite{goodfellow2020generative} to generate new examples). We demonstrate that data augmentation has a potential to improve model performance for the exoplanet detection problem, and recommend the use of augmentation based on generative models as more data becomes available.

Citations (1)

Summary

We haven't generated a summary for this paper yet.