Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Confidence-Level-based Contrastive Discrimination for Class-Imbalanced Semantic Segmentation (2211.15066v1)

Published 28 Nov 2022 in cs.CV

Abstract: To overcome the data-hungry challenge, we have proposed a semi-supervised contrastive learning framework for the task of class-imbalanced semantic segmentation. First and foremost, to make the model operate in a semi-supervised manner, we proposed the confidence-level-based contrastive learning to achieve instance discrimination in an explicit manner, and make the low-confidence low-quality features align with the high-confidence counterparts. Moreover, to tackle the problem of class imbalance in crack segmentation and road components extraction, we proposed the data imbalance loss to replace the traditional cross entropy loss in pixel-level semantic segmentation. Finally, we have also proposed an effective multi-stage fusion network architecture to improve semantic segmentation performance. Extensive experiments on the real industrial crack segmentation and the road segmentation demonstrate the superior effectiveness of the proposed framework. Our proposed method can provide satisfactory segmentation results with even merely 3.5% labeled data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.