Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAIR Principles for data and AI models in high energy physics research and education (2211.15021v1)

Published 28 Nov 2022 in hep-ex

Abstract: In recent years, digital object management practices to support findability, accessibility, interoperability, and reusability (FAIR) have begun to be adopted across a number of data-intensive scientific disciplines. These digital objects include datasets, AI models, software, notebooks, workflows, documentation, etc. With the collective dataset at the Large Hadron Collider scheduled to reach the zettabyte scale by the end of 2032, the experimental particle physics community is looking at unprecedented data management challenges. It is expected that these grand challenges may be addressed by creating end-to-end AI frameworks that combine FAIR and AI-ready datasets, advances in AI, modern computing environments, and scientific data infrastructure. In this work, the FAIR4HEP collaboration explores the interpretation of FAIR principles in the context of data and AI models for experimental high energy physics research. We investigate metrics to quantify the FAIRness of experimental datasets and AI models, and provide open source notebooks to guide new users on the use of FAIR principles in practice.

Citations (3)

Summary

We haven't generated a summary for this paper yet.