Lower Bounds on Retroactive Data Structures (2211.14664v1)
Abstract: We prove essentially optimal fine-grained lower bounds on the gap between a data structure and a partially retroactive version of the same data structure. Precisely, assuming any one of three standard conjectures, we describe a problem that has a data structure where operations run in $O(T(n,m))$ time per operation, but any partially retroactive version of that data structure requires $T(n,m) \cdot m{1-o(1)}$ worst-case time per operation, where $n$ is the size of the data structure at any time and $m$ is the number of operations. Any data structure with operations running in $O(T(n,m))$ time per operation can be converted (via the "rollback method") into a partially retroactive data structure running in $O(T(n,m) \cdot m)$ time per operation, so our lower bound is tight up to an $m{o(1)}$ factor common in fine-grained complexity.