Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Molecule Harvesting by Heterogeneous Receptors on MC Transmitters (2211.14603v3)

Published 26 Nov 2022 in cs.ET

Abstract: This paper designs a molecule harvesting transmitter (TX) model, where the surface of a spherical TX is covered by heterogeneous receptors with different sizes and arbitrary locations. If molecules hit any receptor, they are absorbed by the TX immediately. Within the TX, molecules are stored in vesicles that are continuously generated and released by the TX via the membrane fusion process. Considering a transparent receiver (RX) and molecular degradation during the propagation from the TX to the RX, we derive the molecule release rate and the fraction of molecules absorbed by the TX as well as the received signal at the RX. Notably, this analytical result is applicable for different numbers, sizes, and locations of receptors, and its accuracy is verified via particle-based simulations. Numerical results show that different vesicle generation rates result in the same number of molecules absorbed by the TX, but different peak received signals at the RX.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019.
  2. N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A comprehensive survey of recent advancements in molecular communication,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1887–1919, 3rd Quarter, 2016.
  3. S. Qiu, W. Haselmayr, B. Li, C. Zhao, and W. Guo, “Bacterial relay for energy-efficient molecular communications,” IEEE Trans. Nanobiosci., vol. 16, no. 7, pp. 555–562, Oct. 2017.
  4. Y. Deng, W. Guo, A. Noel, A. Nallanathan, and M. Elkashlan, “Enabling energy efficient molecular communication via molecule energy transfer,” IEEE Commun. Lett., vol. 21, no. 2, pp. 254–257, Feb. 2016.
  5. W. Guo, Y. Deng, H. B. Yilmaz, N. Farsad, M. Elkashlan, A. Eckford, A. Nallanathan, and C.-B. Chae, “SMIET: Simultaneous molecular information and energy transfer,” IEEE Wirel. Commun., vol. 25, no. 1, pp. 106–113, Feb. 2017.
  6. G. Rudnick and J. Clark, “From synapse to vesicle: The reuptake and storage of biogenic amine neurotransmitters,” Biochim. Biophys. Acta Bioenerg., vol. 1144, no. 3, pp. 249–263, Oct. 1993.
  7. A. Ahmadzadeh, V. Jamali, and R. Schober, “Molecule harvesting transmitter model for molecular communication systems,” IEEE Open J. Commun. Soc., vol. 3, pp. 391–410, Mar. 2022.
  8. T. Duke and I. Graham, “Equilibrium mechanisms of receptor clustering,” Prog. Biophys. Mol. Biol., vol. 100, no. 1-3, pp. 18–24, Sep. 2009.
  9. X. Huang, Y. Fang, A. Noel, and N. Yang, “Membrane fusion-based transmitter design for static and diffusive mobile molecular communication systems,” IEEE Trans. Commun., vol. 70, no. 1, pp. 132–148, Jan. 2021.
  10. A. D. Barbour, “Stein’s method and Poisson process convergence,” J. Appl. Probab., vol. 25, no. A, pp. 175–184, 1988.
  11. H. P. Keeler, “Notes on the Poisson point process,” Tech. Rep., 2016.
  12. A. Etemadi, P. Azmi, H. Arjmandi, and N. Mokari, “Compound Poisson noise sources in diffusion-based molecular communication,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4104–4116, Jan. 2019.
  13. S. S. Andrews, “Accurate particle-based simulation of adsorption, desorption and partial transmission,” Phys. Biol., vol. 6, no. 4, p. 046015, Nov. 2009.
  14. X. Huang, Y. Fang, S. T. Johnston, M. Faria, N. Yang, and R. Schober, “Analysis of MC systems employing receivers covered by heterogeneous receptors,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 9, no. 1, pp. 63–78, Mar. 2023.
  15. A. E. Lindsay, A. J. Bernoff, and M. J. Ward, “First passage statistics for the capture of a Brownian particle by a structured spherical target with multiple surface traps,” Multiscale Model. Simul., vol. 15, no. 1, pp. 74–109, Jan. 2017.
  16. H. C. Berg and E. M. Purcell, “Physics of chemoreception,” Biophys. J., vol. 20, no. 2, pp. 193–219, 1977.
  17. A. Noel, K. C. Cheung, and R. Schober, “Using dimensional analysis to assess scalability and accuracy in molecular communication,” in Proc. IEEE ICC Workshops, Budapest, Hungary, June 2013, pp. 818–823.
  18. A. Ahmadzadeh, H. Arjmandi, A. Burkovski, and R. Schober, “Comprehensive reactive receiver modeling for diffusive molecular communication systems: Reversible binding, molecule degradation, and finite number of receptors,” IEEE Trans. Nanobiosci., vol. 15, no. 7, pp. 713–727, Oct. 2016.
  19. B. Hat, B. Kazmierczak, and T. Lipniacki, “B cell activation triggered by the formation of the small receptor cluster: A computational study,” PLoS Computat. Biol., vol. 7, no. 10, p. e1002197, Oct. 2011.
  20. Á. González, “Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices,” Math. Geosci., vol. 42, no. 1, pp. 49–64, Nov. 2010.
Citations (1)

Summary

We haven't generated a summary for this paper yet.