Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Impact of Racial Distribution in Training Data on Face Recognition Bias: A Closer Look (2211.14498v1)

Published 26 Nov 2022 in cs.CV, cs.CY, and cs.LG

Abstract: Face recognition algorithms, when used in the real world, can be very useful, but they can also be dangerous when biased toward certain demographics. So, it is essential to understand how these algorithms are trained and what factors affect their accuracy and fairness to build better ones. In this study, we shed some light on the effect of racial distribution in the training data on the performance of face recognition models. We conduct 16 different experiments with varying racial distributions of faces in the training data. We analyze these trained models using accuracy metrics, clustering metrics, UMAP projections, face quality, and decision thresholds. We show that a uniform distribution of races in the training datasets alone does not guarantee bias-free face recognition algorithms and how factors like face image quality play a crucial role. We also study the correlation between the clustering metrics and bias to understand whether clustering is a good indicator of bias. Finally, we introduce a metric called racial gradation to study the inter and intra race correlation in facial features and how they affect the learning ability of the face recognition models. With this study, we try to bring more understanding to an essential element of face recognition training, the data. A better understanding of the impact of training data on the bias of face recognition algorithms will aid in creating better datasets and, in turn, better face recognition systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Manideep Kolla (1 paper)
  2. Aravinth Savadamuthu (1 paper)
Citations (10)