Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

gatekeeper: Online Safety Verification and Control for Nonlinear Systems in Dynamic Environments (2211.14361v4)

Published 25 Nov 2022 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents the gatekeeper algorithm, a real-time and computationally-lightweight method that ensures that trajectories of a nonlinear system satisfy safety constraints despite sensing limitations. gatekeeper integrates with existing path planners and feedback controllers by introducing an additional verification step to ensure that proposed trajectories can be executed safely, despite nonlinear dynamics subject to bounded disturbances, input constraints and partial knowledge of the environment. Our key contribution is that (A) we propose an algorithm to recursively construct safe trajectories by numerically forward propagating the system over a (short) finite horizon, and (B) we prove that tracking such a trajectory ensures the system remains safe for all future time, i.e., beyond the finite horizon. We demonstrate the method in a simulation of a dynamic firefighting mission, and in physical experiments of a quadrotor navigating in an obstacle environment that is sensed online. We also provide comparisons against the state-of-the-art techniques for similar problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. D. Agrawal and R. Chen, “Gatekeeper,” https://github.com/dev10110/gatekeeper, 2022.
  2. S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion planning using the rrt,” in 2011 IEEE ICRA.   IEEE, 2011, pp. 1478–1483.
  3. D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics,” in 2013 IEEE ICRA, 2013, pp. 5054–5061.
  4. C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments,” in 16th Int. Symposium on Robotics Research.   Springer, 2016, pp. 649–666.
  5. J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “Faster: Fast and safe trajectory planner for navigation in unknown environments,” IEEE TRO, vol. 38, no. 2, pp. 922–938, 2021.
  6. A. Singletary, A. Swann, Y. Chen, and A. D. Ames, “Onboard safety guarantees for racing drones: High-speed geofencing with control barrier functions,” IEEE RAL, vol. 7, no. 2, pp. 2897–2904, 2022.
  7. D. R. Agrawal, R. Chen, and D. Panagou, “Gatekeeper: Online safety verification and control for nonlinear systems in dynamic environments,” in 2023 IEEE IROS, 2023.
  8. D. Harabor and A. Grastien, “Online graph pruning for pathfinding on grid maps,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25, no. 1, 2011, pp. 1114–1119.
  9. S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V. Kumar, “Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments,” IEEE RAL, vol. 2, no. 3, pp. 1688–1695, 2017.
  10. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European Control Conference, 2019, pp. 3420–3431.
  11. W. S. Cortez and D. V. Dimarogonas, “Correct-by-design control barrier functions for euler-lagrange systems with input constraints,” in 2020 American Control Conference, 2020, pp. 950–955.
  12. J. Breeden and D. Panagou, “Guaranteed safe spacecraft docking with control barrier functions,” IEEE Control Systems Letters, vol. 6, pp. 2000–2005, 2021.
  13. M. Abate and S. Coogan, “Enforcing safety at runtime for systems with disturbances,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 2038–2043.
  14. C. Llanes, M. Abate, and S. Coogan, “Safety from in-the-loop reachability for cyber-physical systems,” in Proceedings of the Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems, 2021, pp. 9–10.
  15. D. R. Agrawal, H. Parwana, R. K. Cosner, U. Rosolia, A. D. Ames, and D. Panagou, “A constructive method for designing safe multirate controllers for differentially-flat systems,” IEEE Control Systems Letters, vol. 6, pp. 2138–2143, 2021.
  16. M. Chen, S. L. Herbert, H. Hu, Y. Pu, J. F. Fisac, S. Bansal, S. Han, and C. J. Tomlin, “Fastrack: a modular framework for real-time motion planning and guaranteed safe tracking,” IEEE Transactions on Automatic Control, vol. 66, no. 12, pp. 5861–5876, 2021.
  17. A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An efficient reachability-based framework for provably safe autonomous navigation in unknown environments,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 1758–1765.
  18. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief overview and recent advances,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC).   IEEE, 2017, pp. 2242–2253.
  19. T. Gurriet, M. Mote, A. Singletary, E. Feron, and A. D. Ames, “A scalable controlled set invariance framework with practical safety guarantees,” in 2019 IEEE CDC.   IEEE, 2019, pp. 2046–2053.
  20. J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control barrier–value functions for safety-critical control,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 6814–6821.
  21. S. Tonkens and S. Herbert, “Refining control barrier functions through Hamilton-Jacobi reachability,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022, pp. 13 355–13 362.
  22. C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using robust neural lyapunov-barrier functions,” in Conference on Robot Learning.   PMLR, 2022, pp. 1724–1735.
  23. C. Dawson, B. Lowenkamp, D. Goff, and C. Fan, “Learning safe, generalizable perception-based hybrid control with certificates,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1904–1911, 2022.
  24. O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan, “How to train your neural control barrier function: Learning safety filters for complex input-constrained systems,” arXiv preprint arXiv:2310.15478, 2023.
  25. S. Liu, C. Liu, and J. Dolan, “Safe control under input limits with neural control barrier functions,” in Conference on Robot Learning.   PMLR, 2023, pp. 1970–1980.
  26. W. Lavanakul, J. J. Choi, K. Sreenath, and C. J. Tomlin, “Safety filters for black-box dynamical systems by learning discriminating hyperplanes,” arXiv preprint arXiv:2402.05279, 2024.
  27. U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using learning model predictive control,” in 2017 American Control Conference (ACC).   IEEE, 2017, pp. 5115–5120.
  28. B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-aware trajectory replanning for quadrotor fast flight,” IEEE TRO, vol. 37, no. 6, pp. 1992–2009, 2021.
  29. G. Chou, “Safe end-to-end learning-based robot autonomy via integrated perception, planning, and control,” Ph.D. dissertation, University of Michigan, Ann Arbor, 2022.
  30. P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-Pérez, “Differentiable algorithm networks for composable robot learning,” arXiv preprint arXiv:1905.11602, 2019.
  31. S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan, “Bridging the gap between safety and real-time performance in receding-horizon trajectory design for mobile robots,” The International Journal of Robotics Research, vol. 39, no. 12, pp. 1419–1469, 2020.
  32. P. L. Andrews, “The rothermel surface fire spread model and associated developments: A comprehensive explanation,” Gen. Tech. Rep. RMRS-GTR-371. Fort Collins, CO: US Dept. of Agriculture, Forest Service, Rocky Mountain Research Station. 121 p., vol. 371, 2018.
  33. H. K. Khalil, “Nonlinear systems, 3rd edition,” Prentice Hall, 2002.
  34. D. R. Agrawal and D. Panagou, “Safe and robust observer-controller synthesis using control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 127–132, 2022.
  35. F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
  36. T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a framework for realizable safety critical control through active set invariance,” in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), 2018, pp. 98–106.
  37. J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent and dynamic environments,” IEEE TRO, vol. 38, no. 1, pp. 463–476, 2021.
  38. H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning,” in 2017 IEEE/RSJ IROS.   IEEE, 2017, pp. 1366–1373.
  39. D. R. Agrawal, R. Govindjee, J. Yu, A. Ravikumar, and D. Panagou, “Online and certifiably correct visual odometry and mapping,” arXiv preprint arXiv:2402.05254, 2024.
  40. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in IEEE ICRA.   IEEE, 1990, pp. 384–389.
  41. T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor uav on se (3),” in 49th IEEE CDC.   IEEE, 2010, pp. 5420–5425.
  42. P. Martin, R. M. Murray, and P. Rouchon, “Flat systems, equivalence and trajectory generation,” CDS Technical Report, 2003.
  43. Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup control barrier functions: Formulation and comparative study,” in 2021 60th IEEE Conference on Decision and Control, 2021, pp. 6835–6841.
  44. T. Gurriet, P. Nilsson, A. Singletary, and A. D. Ames, “Realizable set invariance conditions for cyber-physical systems,” in 2019 IEEE ACC.   IEEE, 2019, pp. 3642–3649.
  45. C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich ecosystem for solving differential equations in julia,” J. Open Research Software, vol. 5, no. 1, 2017.
  46. A. Alessandri, P. Bagnerini, M. Gaggero, and L. Mantelli, “Parameter estimation of fire propagation models using level set methods,” Applied Mathematical Modelling, vol. 92, pp. 731–747, 2021.
  47. M. G. Cruz and M. E. Alexander, “The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in forests and shrublands,” Annals of Forest Science, vol. 76, no. 2, pp. 1–11, 2019.
  48. NVIDIA, “NvBlox.” [Online]. Available: https://github.com/nvidia-isaac/nvblox
  49. B. T. Lopez and J. P. How, “Aggressive collision avoidance with limited field-of-view sensing,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 1358–1365.
  50. E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 1203–1218, 2020.
  51. K. B. Naveed, D. Agrawal, C. Vermillion, and D. Panagou, “Eclares: Energy-aware clarity-driven ergodic search,” arXiv preprint arXiv:2310.06933, 2023.
  52. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
  53. A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-source library for real-time metric-semantic localization and mapping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020. [Online]. Available: https://github.com/MIT-SPARK/Kimera
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com