Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Algorithms for Stochastic Score Classification with Small Approximation Ratios (2211.14082v2)

Published 25 Nov 2022 in cs.DS

Abstract: We revisit the Stochastic Score Classification (SSC) problem introduced by Gkenosis et al. (ESA 2018): We are given $n$ tests. Each test $j$ can be conducted at cost $c_j$, and it succeeds independently with probability $p_j$. Further, a partition of the (integer) interval ${0,\dots,n}$ into $B$ smaller intervals is known. The goal is to conduct tests so as to determine that interval from the partition in which the number of successful tests lies while minimizing the expected cost. Ghuge et al. (IPCO 2022) recently showed that a polynomial-time constant-factor approximation algorithm exists. We show that interweaving the two strategies that order tests increasingly by their $c_j/p_j$ and $c_j/(1-p_j)$ ratios, respectively, -- as already proposed by Gkensosis et al. for a special case -- yields a small approximation ratio. We also show that the approximation ratio can be slightly decreased from $6$ to $3+2\sqrt{2}\approx 5.828$ by adding in a third strategy that simply orders tests increasingly by their costs. The similar analyses for both algorithms are nontrivial but arguably clean. Finally, we complement the implied upper bound of $3+2\sqrt{2}$ on the adaptivity gap with a lower bound of $3/2$. Since the lower-bound instance is a so-called unit-cost $k$-of-$n$ instance, we settle the adaptivity gap in this case.

Citations (4)

Summary

We haven't generated a summary for this paper yet.