Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear spectral Turan problems for expansions of graphs with given chromatic number (2211.13647v2)

Published 24 Nov 2022 in math.CO

Abstract: An $r$-uniform hypergraph is linear if every two edges intersect in at most one vertex. The $r$-expansion $F{r}$ of a graph $F$ is the $r$-uniform hypergraph obtained from $F$ by enlarging each edge of $F$ with a vertex subset of size $r-2$ disjoint from the vertex set of $F$ such that distinct edges are enlarged by disjoint subsets. Let $ex_{r}{lin}(n,F{r})$ and $spex_{r}{lin}(n,F{r})$ be the maximum number of edges and the maximum spectral radius of all $F{r}$-free linear $r$-uniform hypergraphs with $n$ vertices, respectively. In this paper, we present the sharp (or asymptotic) bounds of $ex_{r}{lin}( n,F{r})$ and $spex_{r}{lin}(n,F{r})$ by establishing the connection between the spectral radii of linear hypergraphs and those of their shadow graphs, where $F$ is a $(k+1)$-color critical graph or a graph with chromatic number $k$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.