Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to predict and optimise with asymmetric error metrics (2211.13586v1)

Published 24 Nov 2022 in cs.LG

Abstract: In this paper, we examine the concept of the predict and optimise problem with specific reference to the third Technical Challenge of the IEEE Computational Intelligence Society. In this competition, entrants were asked to forecast building energy use and solar generation at six buildings and six solar installations, and then use their forecast to optimize energy cost while scheduling classes and batteries over a month. We examine the possible effect of underforecasting and overforecasting and asymmetric errors on the optimisation cost. We explore the different nature of loss functions for the prediction and optimisation phase and propose to adjust the final forecasts for a better optimisation cost. We report that while there is a positive correlation between these two, more appropriate loss functions can be used to optimise the costs associated with final decisions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.