Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the adaptive Levin method (2211.13400v3)

Published 24 Nov 2022 in math.NA and cs.NA

Abstract: The Levin method is a well-known technique for evaluating oscillatory integrals, which operates by solving a certain ordinary differential equation in order to construct an antiderivative of the integrand. It was long believed that this approach suffers from "low-frequency breakdown," meaning that the accuracy of the calculated value of the integral deteriorates when the integrand is only slowly oscillating. Recently presented experimental evidence, however, suggests that if a Chebyshev spectral method is used to discretize the differential equation and the resulting linear system is solved via a truncated singular value decomposition, then no low-frequency breakdown occurs. Here, we provide a proof that this is the case, and our proof applies not only when the integrand is slowly oscillating, but even in the case of stationary points. Our result puts adaptive schemes based on the Levin method on a firm theoretical foundation and accounts for their behavior in the presence of stationary points. We go on to point out that by combining an adaptive Levin scheme with phase function methods for ordinary differential equations, a large class of oscillatory integrals involving special functions, including products of such functions and the compositions of such functions with slowly-varying functions, can be easily evaluated without the need for symbolic computations. Finally, we present the results of numerical experiments which illustrate the consequences of our analysis and demonstrate the properties of the adaptive Levin method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Li, J., Wang, X., Wang, T.: A universal solution to one-dimensional oscillatory integrals. Science in China Series F: Information Sciences 51, 1614–1622 (2008) (3) Li, J., Wang, X., Wang, T., Xiao, S.: An improved Levin quadrature method for highly oscillatory integrals. Applied Numerical Mathematics 60(8), 833–842 (2010) (4) Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. Journal of Computational and Applied Mathematics 78(1), 131–138 (1997) (5) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Li, J., Wang, X., Wang, T., Xiao, S.: An improved Levin quadrature method for highly oscillatory integrals. Applied Numerical Mathematics 60(8), 833–842 (2010) (4) Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. Journal of Computational and Applied Mathematics 78(1), 131–138 (1997) (5) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. Journal of Computational and Applied Mathematics 78(1), 131–138 (1997) (5) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  2. Li, J., Wang, X., Wang, T., Xiao, S.: An improved Levin quadrature method for highly oscillatory integrals. Applied Numerical Mathematics 60(8), 833–842 (2010) (4) Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. Journal of Computational and Applied Mathematics 78(1), 131–138 (1997) (5) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. Journal of Computational and Applied Mathematics 78(1), 131–138 (1997) (5) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  3. Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. Journal of Computational and Applied Mathematics 78(1), 131–138 (1997) (5) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  4. Moylan, A.J.: Highly oscillatory integration, numerical wave optaions, and the gravitational lensing of gravitational waves. PhD thesis, The Australian National University (2008) (6) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  5. Levin, D.: Fast integration of rapidly oscillatory functions. Journal of Computational and Applied Mathematics 67, 95–101 (1996) (7) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  6. Miller, P.D.: Applied Asymptotic Analysis. American Mathematical Society, Providence, Rhode Island (2006) (8) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  7. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover, New York (1965) (9) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  8. Spigler, R., Vianello, M.: The phase function method to solve second-order asymptotically polynomial differential equations. Numerische Mathematik 121, 565–586 (2012) (10) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  9. Spigler, R.: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method. Journal of Mathematical Analysis and Applications 463, 318–344 (2018) (11) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  10. Spigler, R., Vianello, M.: A numerical method for evaluating the zeros of solutions of second-order linear differential equations. Mathematics of Computation 55, 591–612 (1990) (12) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  11. Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016) (13) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  12. Aubry, M., Bremer, J.: A solver for linear scalar ordinary differential equations whose running time is bounded independent of frequency. arXiv:2311.08578 (2023) (14) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  13. Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Applied and Computational Harmonic Analysis 44, 312–349 (2018) (15) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  14. Bremer, J.: Phase function methods for second order linear ordinary differential equations with turning points. Applied and Computational Harmonic Analysis 65, 137–169 (2023). https://doi.org/10.1016/j.acha.2023.02.005 (16) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  15. Mason, J.C., Hanscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York, New York (2003) (17) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  16. Boyd, J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Applied and Computational Harmonic Analysis 15(2), 168–176 (2003) (18) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  17. Davis, P.: Interpolation and Approximation. Dover, New York, New York (1975) (19) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  18. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.0 of 2020-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. http://dlmf.nist.gov/ (20) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  19. Bateman, H., Erdélyi, A.: Higher Transcendental Functions vol. II. McGraw-Hill, New York, New York (1953) (21) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  20. Zhao, M., Serkh, K.: On the approximation of singular functions by series of non-integer powers. arXiv:2308.10439 (2023) (22) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Sums, Series and Products, 7th edn. Academic Press, Amsterdam (2007) (23) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  22. Bateman, H., Erdélyi, A.: Tables of Integrals vol. II. McGraw-Hill, New York, New York (1954) (24) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  23. Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters, Wellesley, Massachusetts (1997) (25) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021) Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
  24. Garritano, J., Kluger, Y., Rokhlin, V., Serkh, K.: On the efficient evaluation of the azimuthal Fourier components of the Green’s function for Helmholtz’s equation in cylindrical coordinates. arXiv 2104.12241 (2021)
Citations (7)

Summary

We haven't generated a summary for this paper yet.