Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Classification Model Utilizing Facial Landmark Tracking to Determine Sentence Types for American Sign Language Recognition (2211.12723v3)

Published 23 Nov 2022 in eess.IV

Abstract: The deaf and hard of hearing community relies on American Sign Language (ASL) as their primary mode of communication, but communication with others who do not know ASL can be difficult, especially during emergencies where no interpreter is available. As an effort to alleviate this problem, research in computer vision based real time ASL interpreting models is ongoing. However, most of these models are hand shape (gesture) based and lack the integration of facial cues, which are crucial in ASL to convey tone and distinguish sentence types. Thus, the integration of facial cues in computer vision based ASL interpreting models has the potential to improve performance and reliability. In this paper, we introduce a simple, computationally efficient facial expression based classification model that can be used to improve ASL interpreting models. This model utilizes the relative angles of facial landmarks with principal component analysis and a Random Forest Classification tree model to classify frames taken from videos of ASL users signing a complete sentence. The model classifies the frames as statements or assertions. The model was able to achieve an accuracy of 86.5%.

Summary

We haven't generated a summary for this paper yet.