Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The impact of moving expenses on social segregation: a simulation with RL and ABM (2211.12475v1)

Published 22 Nov 2022 in econ.GN, cs.AI, and q-fin.EC

Abstract: Over the past decades, breakthroughs such as Reinforcement Learning (RL) and Agent-based modeling (ABM) have made simulations of economic models feasible. Recently, there has been increasing interest in applying ABM to study the impact of residential preferences on neighborhood segregation in the Schelling Segregation Model. In this paper, RL is combined with ABM to simulate a modified Schelling Segregation model, which incorporates moving expenses as an input parameter. In particular, deep Q network (DQN) is adopted as RL agents' learning algorithm to simulate the behaviors of households and their preferences. This paper studies the impact of moving expenses on the overall segregation pattern and its role in social integration. A more comprehensive simulation of the segregation model is built for policymakers to forecast the potential consequences of their policies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xinyu Li (136 papers)