Autonomation, not Automation: Activities and Needs of Fact-checkers as a Basis for Designing Human-Centered AI Systems (2211.12143v2)
Abstract: To mitigate the negative effects of false information more effectively, the development of AI systems assisting fact-checkers is needed. Nevertheless, the lack of focus on the needs of these stakeholders results in their limited acceptance and skepticism toward automating the whole fact-checking process. In this study, we conducted semi-structured in-depth interviews with Central European fact-checkers. Their activities and problems were analyzed using iterative content analysis. The most significant problems were validated with a survey of European fact-checkers, in which we collected 24 responses from 20 countries, i.e., 62\% of active European signatories of the International Fact-Checking Network (IFCN). Our contributions include an in-depth examination of the variability of fact-checking work in non-English speaking regions, which still remained largely uncovered. By aligning them with the knowledge from prior studies, we created conceptual models that help understand the fact-checking processes. Thanks to the interdisciplinary collaboration, we extend the fact-checking process in AI research by three additional stages. In addition, we mapped our findings on the fact-checkers' activities and needs to the relevant tasks for AI research. The new opportunities identified for AI researchers and developers have implications for the focus of AI research in this domain.