Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Federated Learning with Hidden Information on Personalized Prior (2211.10684v2)

Published 19 Nov 2022 in cs.LG, cs.AI, and cs.DC

Abstract: Federated learning (FL for simplification) is a distributed machine learning technique that utilizes global servers and collaborative clients to achieve privacy-preserving global model training without direct data sharing. However, heterogeneous data problem, as one of FL's main problems, makes it difficult for the global model to perform effectively on each client's local data. Thus, personalized federated learning (PFL for simplification) aims to improve the performance of the model on local data as much as possible. Bayesian learning, where the parameters of the model are seen as random variables with a prior assumption, is a feasible solution to the heterogeneous data problem due to the tendency that the more local data the model use, the more it focuses on the local data, otherwise focuses on the prior. When Bayesian learning is applied to PFL, the global model provides global knowledge as a prior to the local training process. In this paper, we employ Bayesian learning to model PFL by assuming a prior in the scaled exponential family, and therefore propose pFedBreD, a framework to solve the problem we model using Bregman divergence regularization. Empirically, our experiments show that, under the prior assumption of the spherical Gaussian and the first order strategy of mean selection, our proposal significantly outcompetes other PFL algorithms on multiple public benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingjia Shi (14 papers)
  2. Yuhao Zhou (78 papers)
  3. Qing Ye (28 papers)
  4. Jiancheng Lv (99 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.