Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Moving Horizon Estimation and Model Predictive Control for Buildings with Unknown HVAC Dynamics (2211.10097v1)

Published 18 Nov 2022 in eess.SY and cs.SY

Abstract: We present a solution for modeling and online identification for heating, ventilation, and air conditioning (HVAC) control in buildings. Our approach comprises: (a) a resistance-capacitance (RC) model based on first order energy balance for deriving the zone temperature dynamics, and (b) a neural network for modeling HVAC dynamics. State estimation and model identification are simultaneously performed using nonlinear moving horizon estimation (MHE) with physical constraints for system states. We leverage the identified model in model predictive control (MPC) for occupant comfort satisfaction and HVAC energy savings and verify the approach using simulations. Our system relies only on building management system data, does not require extensive data storage, and does not require a detailed building model. This can significantly aid the large scale adoption of MPC for future occupant-centric control of grid-interactive buildings.

Citations (4)

Summary

We haven't generated a summary for this paper yet.