Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating defection in subscription-type markets: empirical analysis from the scholarly publishing industry (2211.09970v1)

Published 18 Nov 2022 in cs.LG, cs.AI, cs.CE, and physics.data-an

Abstract: We present the first empirical study on customer churn prediction in the scholarly publishing industry. The study examines our proposed method for prediction on a customer subscription data over a period of 6.5 years, which was provided by a major academic publisher. We explore the subscription-type market within the context of customer defection and modelling, and provide analysis of the business model of such markets, and how these characterise the academic publishing business. The proposed method for prediction attempts to provide inference of customer's likelihood of defection on the basis of their re-sampled use of provider resources -in this context, the volume and frequency of content downloads. We show that this approach can be both accurate as well as uniquely useful in the business-to-business context, with which the scholarly publishing business model shares similarities. The main findings of this work suggest that whilst all predictive models examined, especially ensemble methods of machine learning, achieve substantially accurate prediction of churn, nearly a year ahead, this can be furthermore achieved even when the specific behavioural attributes that can be associated to each customer probability to churn are overlooked. Allowing as such highly accurate inference of churn from minimal possible data. We show that modelling churn on the basis of re-sampling customers' use of resources over subscription time is a better (simplified) approach than when considering the high granularity that can often characterise consumption behaviour.

Summary

We haven't generated a summary for this paper yet.