Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Penalized Variable Selection with Broken Adaptive Ridge Regression for Semi-competing Risks Data (2211.09895v1)

Published 17 Nov 2022 in stat.ME

Abstract: Semi-competing risks data arise when both non-terminal and terminal events are considered in a model. Such data with multiple events of interest are frequently encountered in medical research and clinical trials. In this framework, terminal event can censor the non-terminal event but not vice versa. It is known that variable selection is practical in identifying significant risk factors in high-dimensional data. While some recent works on penalized variable selection deal with these competing risks separately without incorporating possible correlation between them, we perform variable selection in an illness-death model using shared frailty where semiparametric hazard regression models are used to model the effect of covariates. We propose a broken adaptive ridge (BAR) penalty to encourage sparsity and conduct extensive simulation studies to compare its performance with other popular methods. We perform variable selection in an event specific manner so that the potential risk factors and covariates effects can be estimated and selected, simultaneously corresponding to each event in the study. The grouping effect, as well as the oracle property of the proposed BAR procedure are investigated using simulation studies. The proposed method is then applied to real-life data arising from a Colon Cancer study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.