Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Sample Complexity of Two-Layer Networks: Lipschitz vs. Element-Wise Lipschitz Activation (2211.09634v4)

Published 17 Nov 2022 in cs.LG

Abstract: We investigate the sample complexity of bounded two-layer neural networks using different activation functions. In particular, we consider the class $$ \mathcal{H} = \left{\textbf{x}\mapsto \langle \textbf{v}, \sigma \circ W\textbf{b} + \textbf{b} \rangle : \textbf{b}\in\mathbb{R}d, W \in \mathbb{R}{\mathcal{T}\times d}, \textbf{v} \in \mathbb{R}{\mathcal{T}}\right} $$ where the spectral norm of $W$ and $\textbf{v}$ is bounded by $O(1)$, the Frobenius norm of $W$ is bounded from its initialization by $R > 0$, and $\sigma$ is a Lipschitz activation function. We prove that if $\sigma$ is element-wise, then the sample complexity of $\mathcal{H}$ has only logarithmic dependency in width and that this complexity is tight, up to logarithmic factors. We further show that the element-wise property of $\sigma$ is essential for a logarithmic dependency bound in width, in the sense that there exist non-element-wise activation functions whose sample complexity is linear in width, for widths that can be up to exponential in the input dimension. For the upper bound, we use the recent approach for norm-based bounds named Approximate Description Length (ADL) by arXiv:1910.05697. We further develop new techniques and tools for this approach that will hopefully inspire future works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.