Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle approximation of the doubly parabolic Keller-Segel equation in the plane (2211.09627v2)

Published 17 Nov 2022 in math.PR

Abstract: In this work, we study a stochastic system of N particles associated with the parabolic-parabolic Keller-Segel system. This particle system is singular and non Markovian in that its drift term depends on the past of the particles. When the sensitivity parameter is sufficiently small, we show that this particle system indeed exists for any $N\geq 2$, we show tightness in $N$ of its empirical measure, and that any weak limit point of this empirical measure, as $N\to\infty$, solves some nonlinear martingale problem, which in particular implies that its family of time-marginals solves the parabolic-parabolic Keller-Segel system in some weak sense. The main argument of the proof consists of a Markovianization of the interaction kernel: We show that, in some loose sense, the two-by-two path-dependant interaction can be controlled by a two-by-two Coulomb interaction, as in the parabolic-elliptic case.

Citations (4)

Summary

We haven't generated a summary for this paper yet.