Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear isometries on Weighted Coordinates Poset Block Space (2211.09372v1)

Published 17 Nov 2022 in math.CO, cs.IT, and math.IT

Abstract: Given $[n]={1,2,\ldots,n}$, a poset order $\preceq$ on $[n]$, a label map $\pi : [n] \rightarrow \mathbb{N}$ defined by $\pi(i)=k_i$ with $\sum_{i=1}{n}\pi (i) = N$, and a weight function $w$ on $\mathbb{F}{q}$, let $\mathbb{F}{q}N$ be the vector space of $N$-tuples over the field $\mathbb{F}{q}$ equipped with $(P,w,\pi)$-metric where $ \mathbb{F}_qN $ is the direct sum of spaces $ \mathbb{F}{q}{k_1}, \mathbb{F}{q}{k_2}, \ldots, \mathbb{F}{q}{k_n} $. In this paper, we determine the groups of linear isometries of $(P,w,\pi)$-metric spaces in terms of a semi-direct product, which turns out to be similar to the case of poset (block) metric spaces. In particular, we re-obtain the group of linear isometries of the $(P,w)$-mertic spaces and $(P,\pi)$-mertic spaces.

Summary

We haven't generated a summary for this paper yet.