Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Active Learning with Expected Error Reduction (2211.09283v1)

Published 17 Nov 2022 in cs.LG

Abstract: Active learning has been studied extensively as a method for efficient data collection. Among the many approaches in literature, Expected Error Reduction (EER) (Roy and McCallum) has been shown to be an effective method for active learning: select the candidate sample that, in expectation, maximally decreases the error on an unlabeled set. However, EER requires the model to be retrained for every candidate sample and thus has not been widely used for modern deep neural networks due to this large computational cost. In this paper we reformulate EER under the lens of Bayesian active learning and derive a computationally efficient version that can use any Bayesian parameter sampling method (such as arXiv:1506.02142). We then compare the empirical performance of our method using Monte Carlo dropout for parameter sampling against state of the art methods in the deep active learning literature. Experiments are performed on four standard benchmark datasets and three WILDS datasets (arXiv:2012.07421). The results indicate that our method outperforms all other methods except one in the data shift scenario: a model dependent, non-information theoretic method that requires an order of magnitude higher computational cost (arXiv:1906.03671).

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.