Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PointInverter: Point Cloud Reconstruction and Editing via a Generative Model with Shape Priors (2211.08702v1)

Published 16 Nov 2022 in cs.CV, cs.AI, and cs.GR

Abstract: In this paper, we propose a new method for mapping a 3D point cloud to the latent space of a 3D generative adversarial network. Our generative model for 3D point clouds is based on SP-GAN, a state-of-the-art sphere-guided 3D point cloud generator. We derive an efficient way to encode an input 3D point cloud to the latent space of the SP-GAN. Our point cloud encoder can resolve the point ordering issue during inversion, and thus can determine the correspondences between points in the generated 3D point cloud and those in the canonical sphere used by the generator. We show that our method outperforms previous GAN inversion methods for 3D point clouds, achieving state-of-the-art results both quantitatively and qualitatively. Our code is available at https://github.com/hkust-vgd/point_inverter.

Citations (6)

Summary

We haven't generated a summary for this paper yet.