Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On interpretability and proper latent decomposition of autoencoders (2211.08345v2)

Published 15 Nov 2022 in physics.flu-dyn and cs.LG

Abstract: The dynamics of a turbulent flow tend to occupy only a portion of the phase space at a statistically stationary regime. From a dynamical systems point of view, this portion is the attractor. The knowledge of the turbulent attractor is useful for two purposes, at least: (i) We can gain physical insight into turbulence (what is the shape and geometry of the attractor?), and (ii) it provides the minimal number of degrees of freedom to accurately describe the turbulent dynamics. Autoencoders enable the computation of an optimal latent space, which is a low-order representation of the dynamics. If properly trained and correctly designed, autoencoders can learn an approximation of the turbulent attractor, as shown by Doan, Racca and Magri (2022). In this paper, we theoretically interpret the transformations of an autoencoder. First, we remark that the latent space is a curved manifold with curvilinear coordinates, which can be analyzed with simple tools from Riemann geometry. Second, we characterize the geometrical properties of the latent space. We mathematically derive the metric tensor, which provides a mathematical description of the manifold. Third, we propose a method -- proper latent decomposition (PLD) -- that generalizes proper orthogonal decomposition of turbulent flows on the autoencoder latent space. This decomposition finds the dominant directions in the curved latent space. This theoretical work opens up computational opportunities for interpreting autoencoders and creating reduced-order models of turbulent flows.

Citations (3)

Summary

We haven't generated a summary for this paper yet.