Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Malicious Domains Using Statistical Internationalized Domain Name Features in Top Level Domains (2211.08020v1)

Published 15 Nov 2022 in cs.CR

Abstract: The Domain Name System (DNS) is a core Internet service that translates domain names into IP addresses. It is a distributed database and protocol with many known weaknesses that subject to countless attacks including spoofing attacks, botnets, and domain name registrations. Still, the debate between security and privacy is continuing, that is DNS over TLS or HTTP, and the lack of adoption of DNS security extensions, put users at risk. Consequently, the security of domain names and characterizing malicious websites is becoming a priority. This paper analyzes the difference between the malicious and the normal domain names and uses Python to extract various malicious DNS identifying characteristics. In addition, the paper contributes two categories of features that suppers Internationalized Domain Names and scans domain system using five tools to give it a rating. The overall accuracy of the Random Forest Classifier was 95.6%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.