Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace-hypercyclic conditional type operators on $L^p$-spaces (2211.07939v1)

Published 15 Nov 2022 in math.FA

Abstract: A conditional weighted composition operator $T_u: Lp(\Sigma)\rightarrow Lp(\mathcal{A})$ ($1\leq p<\infty$), is defined by $T_u(f):= E{\mathcal{A}}(u f\circ \varphi)$, where $\varphi: X\rightarrow X$ is a measurable transformation, $u$ is a weight function on $X$ and $E{\mathcal{A}}$ is the conditional expectation operator with respect to $\mathcal{A}$. In this paper, we study the subspace-hypercyclicity of $T_u$ with respect to $Lp(\mathcal{A})$. First, we show that if $\varphi$ is a periodic nonsingular transformation, then $T_u$ is not $Lp(\mathcal{A})$-hypercyclic. The necessary conditions for the subspace-hypercyclicity of $T_u$ are obtained when $\varphi$ is non-singular and finitely non-mixing. For the sufficient conditions, the normality of $\varphi$ is required. The subspace-weakly mixing and subspace-topologically mixing concepts are also studied for $T_u$. Finally, we give an example which is subspace-hypercyclic while is not hypercyclic.

Summary

We haven't generated a summary for this paper yet.