Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Magnification for Data and Feature Augmentation (2211.07859v1)

Published 15 Nov 2022 in cs.CV

Abstract: In recent years, many data augmentation techniques have been proposed to increase the diversity of input data and reduce the risk of overfitting on deep neural networks. In this work, we propose an easy-to-implement and model-free data augmentation method called Local Magnification (LOMA). Different from other geometric data augmentation methods that perform global transformations on images, LOMA generates additional training data by randomly magnifying a local area of the image. This local magnification results in geometric changes that significantly broaden the range of augmentations while maintaining the recognizability of objects. Moreover, we extend the idea of LOMA and random cropping to the feature space to augment the feature map, which further boosts the classification accuracy considerably. Experiments show that our proposed LOMA, though straightforward, can be combined with standard data augmentation to significantly improve the performance on image classification and object detection. And further combination with our feature augmentation techniques, termed LOMA_IF&FO, can continue to strengthen the model and outperform advanced intensity transformation methods for data augmentation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.