Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Tuza's conjecture in co-chain graphs (2211.07766v2)

Published 14 Nov 2022 in math.CO and cs.DM

Abstract: In 1981, Tuza conjectured that the cardinality of a minimum set of edges that intersects every triangle of a graph is at most twice the cardinality of a maximum set of edge-disjoint triangles. This conjecture have been proved for several important graph classes, as planar graphs, tripartite graphs, among others. However, it remains open on other important classes of graphs, as chordal graphs. Furthermore, it remains open for main subclasses of chordal graphs, as split graphs and interval graphs. In this paper, we show that Tuza's conjecture is valid for co-chain graphs with even number of vertices in both sides of the partition, a known subclass of interval graphs.

Summary

We haven't generated a summary for this paper yet.