Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Removing fluid lensing effects from spatial images (2211.07648v1)

Published 14 Nov 2022 in eess.IV, cs.LG, and physics.ao-ph

Abstract: Shallow water and coastal aquatic ecosystems such as coral reefs and seagrass meadows play a critical role in regulating and understanding Earth's changing climate and biodiversity. They also play an important role in protecting towns and cities from erosion and storm surges. Yet technology used for remote sensing (drones, UAVs, satellites) cannot produce detailed images of these ecosystems. Fluid lensing effects, the distortions caused by surface waves and light on underwater objects, are what makes the remote sensing of these ecosystems a very challenging task. Using machine learning, a proof of concept model was developed that is able to remove most of these effects and produce a clearer more stable image.

Summary

We haven't generated a summary for this paper yet.