Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigidity of infinite inversive distance circle packings in the plane (2211.07464v2)

Published 14 Nov 2022 in math.GT

Abstract: In 2004, Bowers-Stephenson [2] introduced the inversive distance circle packings as a natural generalization of Thurston's circle packings. They further conjectured the rigidity of infinite inversive distance circle packings in the plane. Motivated by the recent work of Luo-Sun-Wu [22] on Luo's vertex scaling, we prove Bower-Stephenson's conjecture for inversive distance circle packings in the hexagonal triangulated plane. This generalizes Rodin-Sullivan's famous result [13] on the rigidity of infinite tangential circle packings in the hexagonal triangulated plane. The key tools include a maximal principle for generic weighted Delaunay inversive distance circle packings and a ring lemma for the inversive distance circle packings in the hexagonal triangulated plane.

Citations (6)

Summary

We haven't generated a summary for this paper yet.