Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LGN-Net: Local-Global Normality Network for Video Anomaly Detection (2211.07454v3)

Published 14 Nov 2022 in cs.CV

Abstract: Video anomaly detection (VAD) has been intensively studied for years because of its potential applications in intelligent video systems. Existing unsupervised VAD methods tend to learn normality from training sets consisting of only normal videos and regard instances deviating from such normality as anomalies. However, they often consider only local or global normality in the temporal dimension. Some of them focus on learning local spatiotemporal representations from consecutive frames to enhance the representation for normal events. But powerful representation allows these methods to represent some anomalies and causes miss detection. In contrast, the other methods are devoted to memorizing prototypical normal patterns of whole training videos to weaken the generalization for anomalies, which also restricts them from representing diverse normal patterns and causes false alarm. To this end, we propose a two-branch model, Local-Global Normality Network (LGN-Net), to simultaneously learn local and global normality. Specifically, one branch learns the evolution regularities of appearance and motion from consecutive frames as local normality utilizing a spatiotemporal prediction network, while the other branch memorizes prototype features of the whole videos as global normality by a memory module. LGN-Net achieves a balance of representing normal and abnormal instances by fusing local and global normality. In addition, the fused normality enables LGN-Net to generalize to various scenes more than exploiting single normality. Experiments demonstrate the effectiveness and superior performance of our method. The code is available online: https://github.com/Myzhao1999/LGN-Net.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub