Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Stability of domain wall network with initial inflationary fluctuations, and its implications for cosmic birefringence (2211.06849v2)

Published 13 Nov 2022 in hep-ph, astro-ph.CO, and gr-qc

Abstract: We study the formation and evolution of domain walls with initial inflationary fluctuations by numerical lattice calculations that, for the first time, correctly take into account correlations on superhorizon scales. We find that, contrary to the widely-held claim {over the past few tens of years}, the domain wall network exhibits remarkable stability even when the initial distribution is largely biased toward one of the minima. This is due to the fact that the domain wall network retains information about initial conditions on superhorizon scales, and that the scaling solution is not a local attractor in this sense. Our finding immediately implies that such domain walls will have a significant impact on cosmology, including the production of gravitational waves, baryogenesis, and dark matter from domain walls. Applying this result to the axion-like particle domain wall, we show that it not only explains the isotropic cosmic birefringence suggested by the recent analysis, but also predicts anisotropic cosmic birefringence that is nearly scale-invariant on large scales and can be probed by future CMB observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
  2. A. Vilenkin, Phys. Rev. D 23, 852 (1981).
  3. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000).
  4. M. Hindmarsh, Phys. Rev. Lett. 77, 4495 (1996), arXiv:hep-ph/9605332 .
  5. T. Garagounis and M. Hindmarsh, Phys. Rev. D 68, 103506 (2003), arXiv:hep-ph/0212359 .
  6. A. M. M. Leite and C. J. A. P. Martins, Phys. Rev. D 84, 103523 (2011), arXiv:1110.3486 [hep-ph] .
  7. A. Vilenkin, Phys. Rept. 121, 263 (1985).
  8. P. Sikivie, Phys. Rev. Lett. 48, 1156 (1982).
  9. A. K. Mohanty and F. W. Stecker, Phys. Lett. B 143, 351 (1984).
  10. Z. Lalak and S. Thomas, Phys. Lett. B 306, 10 (1993), arXiv:hep-ph/9303250 .
  11. A. D. Linde and D. H. Lyth, Phys. Lett. B 246, 353 (1990).
  12. D. H. Lyth, Phys. Rev. D 45, 3394 (1992).
  13. M. Nagasawa and J. Yokoyama, Nucl. Phys. B 370, 472 (1992).
  14. F. Takahashi and W. Yin, JCAP 04, 007 (2021), arXiv:2012.11576 [hep-ph] .
  15. Y. Minami and E. Komatsu, Phys. Rev. Lett. 125, 221301 (2020), arXiv:2011.11254 [astro-ph.CO] .
  16. P. Diego-Palazuelos et al., Phys. Rev. Lett. 128, 091302 (2022), arXiv:2201.07682 [astro-ph.CO] .
  17. T. Matsumura et al., J. Low Temp. Phys. 184, 824 (2016).
  18. P. Ade et al. (Simons Observatory), JCAP 02, 056 (2019), arXiv:1808.07445 [astro-ph.CO] .
  19. K. N. Abazajian et al. (CMB-S4),   (2016), arXiv:1610.02743 [astro-ph.CO] .
  20. S. Hanany et al. (NASA PICO),   (2019), arXiv:1902.10541 [astro-ph.IM] .
  21. T. Kobayashi and F. Takahashi, JCAP 08, 056 (2016), arXiv:1607.04294 [hep-ph] .
  22. P. A. R. Ade et al. (BICEP/Keck),   (2022), arXiv:2210.08038 [astro-ph.CO] .
  23. S. M. Carroll and G. B. Field, Phys. Rev. D 43, 3789 (1991).
  24. D. Harari and P. Sikivie, Phys. Lett. B 289, 67 (1992).
  25. S. Gasparotto and I. Obata,   (2022), arXiv:2203.09409 [astro-ph.CO] .
Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.