Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Domain Coverage for Vehicles with Second-Order Dynamics via Multi-Agent Reinforcement Learning (2211.05952v4)

Published 11 Nov 2022 in cs.RO, cs.LG, and cs.MA

Abstract: Collaborative autonomous multi-agent systems covering a specified area have many potential applications, such as UAV search and rescue, forest fire fighting, and real-time high-resolution monitoring. Traditional approaches for such coverage problems involve designing a model-based control policy based on sensor data. However, designing model-based controllers is challenging, and the state-of-the-art classical control policy still exhibits a large degree of sub-optimality. In this paper, we present a reinforcement learning (RL) approach for the multi-agent efficient domain coverage problem involving agents with second-order dynamics. Our approach is based on the Multi-Agent Proximal Policy Optimization Algorithm (MAPPO). Our proposed network architecture includes the incorporation of LSTM and self-attention, which allows the trained policy to adapt to a variable number of agents. Our trained policy significantly outperforms the state-of-the-art classical control policy. We demonstrate our proposed method in a variety of simulated experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. G. Zhang, G. K. Fricke, and D. P. Garg, “Spill detection and perimeter surveillance via distributed swarming agents,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 121–129, 2013.
  2. W. J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H. Kim, “Cooperative multiagent deep reinforcement learning for reliable surveillance via autonomous multi-uav control,” IEEE Trans. Industr. Inform., vol. 18, no. 10, pp. 7086–7096, 2022.
  3. X. Dang, C. Shao, and Z. Hao, “Target detection coverage algorithm based on 3d-voronoi partition for three-dimensional wireless sensor networks,” Mobile Information Systems, vol. 2019, pp. 1–15, 03 2019.
  4. W. Wang, V. Srinivasan, K.-C. Chua, and B. Wang, “Energy-efficient coverage for target detection in wireless sensor networks,” in Int. Symposium on Information Processing in Sensor Networks, 2007.
  5. D. Drew, “Multi-agent systems for search and rescue applications,” Current Robotics Reports, vol. 2, June 2021.
  6. J. P. Queralta, J. Taipalmaa, B. Can Pullinen, V. K. Sarker, T. Nguyen Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision,” IEEE Access, vol. 8, pp. 191617–191643, 2020.
  7. J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Trans. Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.
  8. Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,” IEEE Trans. Industr. Inform., vol. 9, no. 1, pp. 427–438, 2013.
  9. S. S. Ge and Y. Cui, “Dynamic motion planning for mobile robots using potential field method,” Autonomous Robots, vol. 13, pp. 207–222, 2002.
  10. J. Chacon, M. Chen, and R. C. Fetecau, “Safe coverage of compact domains for second order dynamical systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15167–15173, 2020.
  11. Y. Tan, “Multi-robot swarm for cooperative scalar field mapping,” in Handbook of Research on Design, Control, and Modeling of Swarm Robotics, pp. 383–395, IGI Global, 2015.
  12. M. T. Nguyen, H. M. La, and K. A. Teague, “Collaborative and compressed mobile sensing for data collection in distributed robotic networks,” IEEE Trans. Control Netw. Syst., vol. 5, no. 4, pp. 1729–1740, 2018.
  13. H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and distributed reinforcement learning of drones for field coverage,” 2018. arXiv preprint:1803.07250.
  14. J. Xiao, G. Wang, Y. Zhang, and L. Cheng, “A distributed multi-agent dynamic area coverage algorithm based on reinforcement learning,” IEEE Access, vol. 8, pp. 33511–33521, 2020.
  15. J. Heydari, O. Saha, and V. Ganapathy, “Reinforcement learning-based coverage path planning with implicit cellular decomposition,” 2021. arXiv preprint: 2110.09018.
  16. A. A. Adepegba, S. Miah, and D. Spinello, “Multi-agent area coverage control using reinforcement learning,” in Int. Florida Artificial Intelligence Research Society Conf., 2016.
  17. M. Kouzehgar, M. Meghjani, and R. Bouffanais, “Multi-agent reinforcement learning for dynamic ocean monitoring by a swarm of buoys,” in Global Oceans 2020: Singapore – U.S. Gulf Coast, 2020.
  18. R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” in Int. Conf. Neural Information Processing Systems, December 2017.
  19. J. Chacon, M. Chen, and R. C. Fetecau, “Safe coverage of moving domains for vehicles with second order dynamics,” IEEE Trans. Autom. Control, 2022. Early access.
  20. F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs. Springer, 1st ed., 2016.
  21. C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of PPO in cooperative, multi-agent games,” 2022. arXiv preprint: 2103.01955.
  22. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017. arXiv preprint: 1707.06347.
  23. J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” in Int. Conf. Learning Representations (ICLR), 2016.
  24. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, pp. 1735–1780, 11 1997.
  25. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Int. Conf. Neural Information Processing Systems, 2017.
  26. P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, “Value-decomposition networks for cooperative multi-agent learning based on team reward,” in Int. Conf. Autonomous Agents and MultiAgent Systems, 2018.
  27. J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using deep reinforcement learning,” in Autonomous Agents and Multiagent Systems, 2017.
  28. J. K. Terry, N. Grammel, S. Son, and B. Black, “Parameter sharing for heterogeneous agents in multi-agent reinforcement learning,” 2020. arXiv preprint: 2005.13625.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xinyu Zhao (54 papers)
  2. Razvan C. Fetecau (25 papers)
  3. Mo Chen (95 papers)
Citations (1)