Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Mean-field backward stochastic differential equations and nonlocal PDEs with quadratic growth (2211.05676v3)

Published 10 Nov 2022 in math.PR

Abstract: In this paper, we study general mean-field backward stochastic differential equations (BSDEs, for short) with quadratic growth. First, the existence and uniqueness of local and global solutions are proved with some new ideas for a one-dimensional mean-field BSDE when the generator $g\big(t, Y, Z, \mathbb{P}{Y}, \mathbb{P}{Z}\big)$ has a quadratic growth in $Z$ and the terminal value is bounded. Second, a comparison theorem for the general mean-field BSDEs is obtained with the Girsanov transform. Third, we prove the convergence of the particle systems to the mean-field BSDEs with quadratic growth, and the convergence rate is also given. Finally, in this framework, we use the mean-field BSDE to provide a probabilistic representation for the viscosity solution of a nonlocal partial differential equation (PDE, for short) as an extended nonlinear Feynman-Kac formula, which yields the existence and uniqueness of the solution to the PDE.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.