Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Multi-Corpora Language Model Training for Speech Recognition (2211.05121v1)

Published 9 Nov 2022 in eess.AS, cs.CL, and cs.LG

Abstract: Neural network LLM (NNLM) plays an essential role in automatic speech recognition (ASR) systems, especially in adaptation tasks when text-only data is available. In practice, an NNLM is typically trained on a combination of data sampled from multiple corpora. Thus, the data sampling strategy is important to the adaptation performance. Most existing works focus on designing static sampling strategies. However, each corpus may show varying impacts at different NNLM training stages. In this paper, we introduce a novel adaptive multi-corpora training algorithm that dynamically learns and adjusts the sampling probability of each corpus along the training process. The algorithm is robust to corpora sizes and domain relevance. Compared with static sampling strategy baselines, the proposed approach yields remarkable improvement by achieving up to relative 7% and 9% word error rate (WER) reductions on in-domain and out-of-domain adaptation tasks, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.