Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

All rf-based tuning algorithm for quantum devices using machine learning (2211.04504v1)

Published 8 Nov 2022 in cond-mat.mes-hall and quant-ph

Abstract: Radio-frequency measurements could satisfy DiVincenzo's readout criterion in future large-scale solid-state quantum processors, as they allow for high bandwidths and frequency multiplexing. However, the scalability potential of this readout technique can only be leveraged if quantum device tuning is performed using exclusively radio-frequency measurements i.e. without resorting to current measurements. We demonstrate an algorithm that automatically tunes double quantum dots using only radio-frequency reflectometry. Exploiting the high bandwidth of radio-frequency measurements, the tuning was completed within a few minutes without prior knowledge about the device architecture. Our results show that it is possible to eliminate the need for transport measurements for quantum dot tuning, paving the way for more scalable device architectures.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.