Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Local Search-Based Approach for Set Covering (2211.04444v1)

Published 8 Nov 2022 in cs.DS

Abstract: In the Set Cover problem, we are given a set system with each set having a weight, and we want to find a collection of sets that cover the universe, whilst having low total weight. There are several approaches known (based on greedy approaches, relax-and-round, and dual-fitting) that achieve a $H_k \approx \ln k + O(1)$ approximation for this problem, where the size of each set is bounded by $k$. Moreover, getting a $\ln k - O(\ln \ln k)$ approximation is hard. Where does the truth lie? Can we close the gap between the upper and lower bounds? An improvement would be particularly interesting for small values of $k$, which are often used in reductions between Set Cover and other combinatorial optimization problems. We consider a non-oblivious local-search approach: to the best of our knowledge this gives the first $H_k$-approximation for Set Cover using an approach based on local-search. Our proof fits in one page, and gives a integrality gap result as well. Refining our approach by considering larger moves and an optimized potential function gives an $(H_k - \Omega(\log2 k)/k)$-approximation, improving on the previous bound of $(H_k - \Omega(1/k8))$ (\emph{R.\ Hassin and A.\ Levin, SICOMP '05}) based on a modified greedy algorithm.

Citations (7)

Summary

We haven't generated a summary for this paper yet.