Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Numerical Approximations for SDDEs in Finite and Infinite Horizons using the Adaptive EM Method: Strong Convergence and Almost Sure Exponential Stability (2211.03771v2)

Published 7 Nov 2022 in math.PR, cs.NA, and math.NA

Abstract: In this paper we investigate explicit numerical approximations for stochastic differential delay equations (SDDEs) under a local Lipschitz condition by employing the adaptive Euler-Maruyama (EM) method. Working in both finite and infinite horizons, we achieve strong convergence results by showing the boundedness of the pth moments of the adaptive EM solution. We also obtain the order of convergence infinite horizon. In addition, we show almost sure exponential stability of the adaptive approximate solution for both SDEs and SDDEs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.