Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive User-Centered Multimodal Interaction towards Reliable and Trusted Automotive Interfaces (2211.03539v1)

Published 7 Nov 2022 in cs.HC and cs.AI

Abstract: With the recently increasing capabilities of modern vehicles, novel approaches for interaction emerged that go beyond traditional touch-based and voice command approaches. Therefore, hand gestures, head pose, eye gaze, and speech have been extensively investigated in automotive applications for object selection and referencing. Despite these significant advances, existing approaches mostly employ a one-model-fits-all approach unsuitable for varying user behavior and individual differences. Moreover, current referencing approaches either consider these modalities separately or focus on a stationary situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints. In this paper, I propose a research plan for a user-centered adaptive multimodal fusion approach for referencing external objects from a moving vehicle. The proposed plan aims to provide an open-source framework for user-centered adaptation and personalization using user observations and heuristics, multimodal fusion, clustering, transfer-of-learning for model adaptation, and continuous learning, moving towards trusted human-centered artificial intelligence.

Citations (7)

Summary

We haven't generated a summary for this paper yet.